首页> 外文OA文献 >Computing maximum likelihood estimates of loglinear models from marginal sums with special attention to loglinear item response theory
【2h】

Computing maximum likelihood estimates of loglinear models from marginal sums with special attention to loglinear item response theory

机译:从边际和计算对数线性模型的最大似然估计,尤其要注意对数线性项目响应理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper algorithms are described for obtaining the maximum likelihood estimates of the parameters in loglinear models. Modified versions of the iterative proportional fitting and Newton-Raphson algorithms are described that work on the minimal sufficient statistics rather than on the usual counts in the full contingency table. This is desirable if the contingency table becomes too large to store. Special attention is given to loglinear IRT models that are used for the analysis of educational and psychological test data. To calculate the necessary expected sufficient statistics and other marginal sums of the table, a method is described that avoids summing large numbers of elementary cell frequencies by writing them out in terms of multiplicative model parameters and applying the distributive law of multiplication over summation. These algorithms are used in the computer program LOGIMO. The modified algorithms are illustrated with simulated data.
机译:本文描述了用于获取对数线性模型中参数的最大似然估计的算法。描述了迭代比例拟合和Newton-Raphson算法的修改版本,它们基于最小的充分统计量而不是完整的列联表中的通常计数来工作。如果列联表太大而无法存储,则这是理想的。特别注意对数线性IRT模型,该模型用于分析教育和心理测验数据。为了计算表的必要预期充分统计量和其他边际和,描述了一种方法,该方法避免了通过将基本单元频率按照乘法模型参数写出并将总分布的乘积定律应用于求和而避免对大量基本单元频率求和。这些算法在计算机程序LOGIMO中使用。修改后的算法与仿真数据一起说明。

著录项

  • 作者

    Kelderman, Henk;

  • 作者单位
  • 年度 1992
  • 总页数
  • 原文格式 PDF
  • 正文语种 und
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号